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Foreword Microwave radar systems are crucial components of any standoff sensor system due to their all-weather
capabilities and proven performance for tracking, imaging, and situational awareness. However, complex electromag-
netic wave propagation environment such as urban area with clutter discrete can make separation of target signatures
and propagation channel effects difficult; a radar capable of adaptively varying its transmit waveforms for probing
the environment, including the use of multiple transmit/receive antennas can provide distinct gains in separating these

effects.

Under this DURIP program we build a collaborative research resource based on software defined radar (SDR) plat-
forms that can adaptively modify both transmit waveforms and receive signal-processing tasks in real time. This
collaborative research resource will be utilized by faculty and students of the Ohio State University, University of
Michigan, Massachusetts Institute of Technology and Arizona State University. The testbed consists of 14 Micro SDR
Platforms with 2 transmit and 1 receive antennas and a standalone high performance multichannel SDR multiplexed

to a 32 x 32 antenna array.
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1 Problem Statement

MIMO radar systems which can transmit independent waveforms on multiple antennas have been suggested for im-
proving detection, parameter estimation and clutter suppression capabilities. While many traditional multi-antenna
radar concepts such as phased-array, receive beamforming, STAP, polarimetry, and interferometry can be seen as spe-
cial cases of MIMO radar, the distinct advantage of a multi-antenna radar system with independent transmit waveforms
is the increased number of degrees of freedom leading to improved resolution, detection and parameter estimation.
MIMO system benefits can be realized in the form of reduced pulse repetition frequency (PRF), larger spot sizes,

and/or lower transmit energy.

In the literature, MIMO radars are distinguished based on the geometry of the receive and transmit centers. There are
two main categories. MIMO radars with widely separated transmit and receive arrays provide statistically independent
measurements of the illuminated scene and are categorized as a statistical MIMO radars. MIMO radar systems with
widely separated antennas employs spatially diverse transmitters and receivers to overcome target fading effects [1],

[2] or to estimate a target’s location with high resolution [3, 4]. If antennas are relatively close to each other, so that
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for each scatterer in the illuminated scene the angle of arrival is approximately the same for all phase centers, then
the system is referred to as a coherent MIMO radar. The main advantage of the coherent MIMO radar is its ability to
synthesize a large virtual array with fewer antenna elements for improved spatial processing. The OSU micro SDR
platforms we developed will enable research in both modalities as well as novel hybrid modes combining elements of

the two in a multi-static setting.

In this project our focus is development of a low power, short range versatile radar system that combines a high
speed FPGA digital back-end with sideband digital/analog and analog/digital converters with a custom built RF Fron-
tend. The key idea is software defined radar system is to sample the transmit/receive waveforms using high speed
digital/analog and analog/digital converters and to implement key processing stages using programmable digital hard-
ware [5]. This allows the SDR to, for example, change modes from detection to tracking, or adapt its waveform based
on environmental conditions and or information derived from previous radar interrogations. Increasing number of
transmit and receive channels with the use of antenna switching matrix for MIMO applications is discussed in [6].
The use of MIMO radar for studying wideband radar array signal processing in short range indoor application has
been demonstrated in [7], where non-adaptive linear frequency FM waveforms are used. Application of waveform
adaptation for matching transmitted waveform to the target’s impulse response improves target detection and aids in

target identification [8, 9]. However, experimental verification of these ideas have not been widely explored.

Under this DURIP program we build a collaborative research resource based on software defined radar (SDR) plat-
forms that can adaptively modify both transmit waveforms and receive signal-processing tasks in real time. The testbed
consists of 14 Micro SDR Platforms with 2 transmit and 1 receive antennas and a standalone high performance multi-
channel SDR multiplexed to a 32 x 32 antenna array. This two-tiered architecture allows research and experimentation

in many domains of active sensing. Specifically we focus on three scenarios:

e Micro SDRs can be deployed to perform non-coherent fusion of backscatter returns (also known as statistical
MIMO radar) to decrease fluctuations in target returns to selective fading through spatial diversity. The Micro
SDRs can modify their transmit waveforms and pulse repetition frequencies cooperatively to adapt changes in
the background and target returns as well as scene complexity. In addition micro SDRs can be mounted on

robotic platforms to optimize the collection geometry and derive fusion research with other modalities such as



Final Report (DURIP) MIMO Radar Testbed for Waveform Adaptive Sensing Research

EO, IR cameras and acoustic sensors.

e Co-located MIMO array paired with the switchable antenna array matrix can emulate airborne collections with
its 32x32 antenna matrix. Focus will be on space-time adaptive (STAP) techniques for detection of slow moving
targets against stationary clutter. Specifically, the performance of the MIMO STAP techniques critically hinges
on the structure of the clutter covariance matrix, and to our best knowledge the testbed will be unique in its data

collection capability for massive MIMO arrays.

o Alternatively the two components of the testbed can be combined to provide a novel operation scenario, where
the coherent MIMO array is used to emulate illumination by an airborne platform with multi-static passive

sensing by micro-SDR platforms from diverse set of aspect angles.

There are many other scenarios where the components of the testbed can be used to derive research in active sensing.

This report focuses on details of the hardware design for the SDR platforms.

Figure 1: Waveform adaptive MIMO SDR

2 Design Summary and Results

The operational principle of a software defined radar system is to sample the transmit/receive waveforms using high

speed digital/analog and analog/digital converters and to implement key processing stages using programmable digital



Final Report (DURIP) MIMO Radar Testbed for Waveform Adaptive Sensing Research

hardware. The block diagram for the proposed software defined radar system is given in Figure 1. A high speed
digital waveform generator is used to construct independent waveforms for a set of transmit antennas, and produces
a synchronized multi-channel baseband transmit signal which is mixed and amplified for transmission. In the receive
signal chain, the received energy is filtered, amplified, and downconverted by an RF module, sampled in the baseband
bandwidth synchronously across the multiple channels, and passed to an FPGA-based real-time signal processor for
multi-channel coherent processing. The adaptive operation of the system is controlled by the information driven active
sensing layer which allocates system resources to achieve sensing objectives by supplying the user with ATR primitives
(target detections, target track and ID). The current implementation of the micro SDR platform is given in Figure 2
with the custom X-Band RF frontend developed at OSU on the top and the off the shelf high speed digital backend at

the bottom. Design details for the first spiral of the design cycle were reported earlier in [10].

Figure 2: OSU Micro SDR platform

2.1 Novel Hybrid Up and Downconversion Stage Design

In an idealized model of software defined radar analog-to-digital and digital-to-analog conversion will be accomplished

at the RF frequency band without analog conversion stages. This way, down and up-conversion will be performed in the
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digital domain limiting the analog components to high-dynamic range low noise amplifier (LNA) and power transmit
amplifiers. Unfortunately, existing ADC performance is far from operating with high dynamic range in the radar bands
of interest at multiple GHz. In addition, real time signal processing tasks of frequency conversion, digital filtering will
require multiple FPGA/DSPs operating on interleaved data to cope with the large sampling rate of receive and transmit
signals. Therefore, RF fronted in a software defined radar system have to include up and down conversion stages.
There are many options of implementing conversion stages. The most common architecture is heterodyne receiver
structure that uses an conversion stages at multiple intermediate frequencies (IF) to implement image suppression and
channel selection. Heterodyne receivers can achieve high sensitivity and channel selectivity, DC offset is eliminated
in the bandpass filters following each IF conversion. However, large number of components including image rejection
filters are required for multiple conversion stages increasing the complexity of the design. At the other end of the
spectrum of the receiver structures are Zero-IF receivers that employ single quadrature demodulator to bring the RF
passband signal to complex baseband. Zero-IF receivers are not subject to the image problem common to receivers
with intermediate frequency conversion stages. However, significant DC offsets at the output of quadrature mixers as

a result of LO leakage signal mixing with itself.

In our design we employ a hybrid structure relying on the oversampling design of the DAC which can generate
waveforms at digitally generated IF frequencies. On transmit, we directly generate a pass band signal around a lowIF
frequency of 187.5 MHz with a bandwidth of 125 MHz using the oversampling DACs in our system. Each DAC is
used to generate an independent transmit waveform as real-valued pass band signal. For each transmit channel, low-IF
pass-band signal is up-converted to X-band using a single channel mixer. We use a RF pass-band filter to reject the
image and LO leakage. On receive we use a RF band-pass filter to limit the wideband noise and a zero-IF receiver
with quadrature downconversion with the same LO that generated the transmit signal. As a result the received signal
is passband signal at the output of down-conversion mixer’s I and Q outputs. Next, we employ standard bandpass
sampling in the second Nyquist zone, to alias the digitally generated low-IF signal to the baseband. We note that in
our system DAC and ADC use a single clock -source eliminating the problem of clock-jitter limiting the performance
of band-pass sampling systems in practice. In addition low-IF bandpass sampling system enables us to use a DC-
blocker at the output of quadrature mixer output, eliminating the DC-offset problem common to zero-IF receivers.

Figure 3 shows the novel hybrid up and downconversion employed in our design
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Figure 3: Frequency content of the transmit baseband, transmit passband and receive baseband signals. Bandpass

sampling aliasing is depicted as dashed lines.

The custom RF Frontend built at Ohio State features two independent Transmit (TX) and a single Receive (RX) channel
multiplexed to four receive antennas. The instantaneous bandwidth of the system is 250 MHz. The RF Frontend
operates at X-band and includes an onboard Phase Locked Loop (PLL) and Voltage Controlled Oscillator (VCO) to

generate Local Oscillator (LO) signal from a local GPS conditioned oven-controlled 10 MHz reference.

2.2 RF Frontend Design

Figure 4 shows the block diagram of Receiver. The inputs of four RX antennas are fed to a Low Noise Amplifier
(LNA) whose output is connected to receive frontend through switching circuit. Since it is likely that the antennas will

be connected to the rest of the RF system by long cables, including the LNA close to the antenna reduces the impact
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Figure 4: Block Diagram of receiver

of cable loss on receiver’s overall noise figure. The signal from the switch is filtered through a resonant coupled
Band Pass Filter (BPF) to filter any blocker and image signal. The filtered signal is down converted by In-phase and
Quadrature (IQ) mixer and the down converted signal is amplified by an IF amplifier. The amplified signal is filtered
by a low pass filter and digitized by high speed ADC. In order to minimize the phase and amplitude imbalance in IQ

signal, the I and Q channels are routed symmetrically and dual IF amplifier is used for amplification.

Figure 5: Block Diagram of Transmitter

Figure 5 shows the block diagram of Transmitter. The IF signal is generated by the DAC at 250 MHz and 0 dBm
power. The IF single is filtered by a Low Pass Filter (LPF) to remove digital copies and amplified by a base band
amplifier. The amplified signal is up converted to X-Band using a double-balanced mixer and further amplified by a
high Power Amplifier (PA). The amplified signal is filtered by a resonant coupled band pass filter to remove mixer and

power amplifier inter-modulation components.

The on board PLL requires a reference signal of 50 MHz signal for locking, however the GPS conditioned reference
is designed to generate a 10 MHz signal. Hence a 5X frequency multiplier is used and a combination of Low Pass
and High Pass filters were used to remove harmonics from the multiplier. The reference signal is further amplifier

to compensate for the loss during frequency multiplication. This resulting 50 MHz signal is used as reference by the
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PLL. Output of PLL is divided equally by a 3 dB splitter and further amplified by driver amplifiers and this amplified
signal is used by the mixers for up and down conversion. The PLL used on the SDR works with a standard four wire
Serial Peripheral Interface (SPT). MSP430F1611 micro controller is used for configuring the registers on the PLL upon

power up.

Figure 6: Momentum 3D view of Resonant Coupled Band Pass filter

Figure 7: Simulated frequency response of band pass filter

Figure 6 shows the Momentum 3D view of resonant coupled band pass filter used on both transmit and receive section
of Ohio State’s RF Frontend. Increasing the number of sections will provide a sharper cutoff for the filter but at the
same time increase the insertion loss. Hence to optimize both roll off and insertion loss a four section topology was
chosen. Each section of the filter is designed with Microstrip coupled line (MCLIN) and Linecalc software was used to
calculate odd and even mode impedance of MCLIN. Microstip to Coplanar Waveguide (CPW) transition was designed
and added to both input and output ports of the filter so that the filter can be connected to the components on the board.
Figure 7 shows the frequency response of the filter. From the figure it can be seen that the insertion loss at center

frequency is roughly 3 dB and attenuation at the sideband (Fo + Frr) is approximately 20 dB.

Schematics and the layout of the RF Frontend Printed Circuit Board (PCB) designed at Ohio State are given in Ap-
pendix A. All the RF and IF components are placed on the top side of the board. To minimize the signal cross

coupling and to reduce the effect of power supply induced signal distortion, each RF and IF components have different
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Figure 8: Spectrum of Transmitter with 250 MHz IF signal at -3 dbm power

bias and power supply. The RF Frontend is fabricated on a 4 layer RO4350B substrate and all the RF traces were
designed and simulated on Advanced Design System (ADS) software. The board was designed using Allegro PCB

editor software.

2.3 Antenna Switching Matrix

Both the micro SDR and standalone multi-channel MIMO SDR unit RF fronted units are designed for interfacing
with antenna arrays for multiplexing large number of receive and antenna arrays. For the standalone array we have
designed a 32 TX and 32 RX antenna array to interface to 4 transmit and 4 receive channels on the RF frontend. 32
Tx and 32 Rx antennas are printed on a circuit board in two rows parallel to each other. The system can emulate linear
airborne motion along its long axis by sequentially selecting 4 consecutive Rx antennas out of the available 32 receive
and transmit antennas. For each pulse four independent waveforms are transmitted from four transmitters and received
by four antennas that are electronically selected. At subsequent pulses, waveforms transmitted from different set of
four receiving and transmit antennas shifted spatially k\/2 relative to the previous set, where A is the wavelength and

k is an integer.

The emulated airborne speed is given by the spacing between elements of the synthesized receivers arrays in subse-
quent pulses and the pulse repetition frequency. Each receive antenna has an LNA mounted on the back to minimize
the noise figure. Then we use set of four 4 x 1 switches followed by another 4 x 1 switch to allow routing of 32 antennas

to the 4 physical channels on the fronted. Schematics for the switching matrix are given in Appendix B.
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2.4 Benchtop Measurements

All measurements were performed in lab environment with IF signal generated with Agilent Analog Signal generator
and measured with Agilent PXA Spectrum Analyzer. The receiver is characterized with transmit signal looped back
to receiver with 40 dB attenuation. Figure 8 shows the transmit spectrum with 250 MHz signal at IF. The desired
signal appears at (Fr,o — Frr). Along with the desired signal, LO signal is also present due to the finite LO-RF
isolation of the mixer. However on the receiver side, during down conversion this LO leakage signal will be down
converted to Direct Current (DC) and will be blocked by capacitors. In addition to this Fr.o + Frr and Fro — 2Fr
(third order inter-modulation) are present at the output. The highest interfering signal is the LO leakage with 10dB

suppression

Figure 9: Transmitter Two Tone test result (tones centered at 250 MHz with 25 MHz frequency separation)

Figure 9 shows two tone test result of transmitter. The two tones are -3 dBm in power and are centered at 250 MHz and
with 25 MHz separation between them. As seen in any upconversion transmitter, due to the non linearity of mixer and
power amplifiers, the two tones interact with each other and produce second and third order inter-modulation products.
The important component for signal analysis is third order intermodulation products. From the figure the third order
inter modulation products are at 2F, — F3 and 2F; — F5,. Measured IM3 value is 16.44 dB which is consistent with

the theoretical value calculated from specification of the components.

Table 1 summarizes measured critical performance metrics of the Transmitter and Receiver.

10
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Table 1: Critical Specifications of Transmitter and Receiver

Specification | Transmitter | Receiver
Gain 23.40 dB 2420 dB
OIP3 33.99dBm | 29.20 dBm
P1dB -0.30 dBm | -7.82 dBm

Noise Figure NA 2.76 dB

Figure 10: Range-Doppler Map of a vehicle for the two transmit channels

2.5 Experimental Results

We have validated the micro SDR platform performance through field tests. For the particular field test we have used
two independent waveforms of 120 MHz Bandwidth: one up-chirp and one down-chirp on the two transmit antennas.
The two waveforms are generated coherently in the FPGA and therefore orthogonal at each time in the frequency
domain. The backscatter energy from the objects in the field of view are sampled using a single receive channel
operating at 250 MSamples/sec at I and Q channels. After baseband filtering and down-sampling the responses to

each transmit channel is captured through match filtering with its associated waveform. We use a pulse repetition

11
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Figure 11: Range-Doppler Map of two dismounts walking at different speeds for the two transmit channels

frequency of 1KHz and use pulses that are 100 psec long. The coherent processing interval (CPI) Is 64 pulses. The

returns are filtered in Doppler to suppress returns form stationary clutter.

In the first experiment returns from a vehicle moving away from the radar are captured. The Range-Doppler map for
the two transmit channels captured through a single channel are given in Figure 10. The target returns are clearly
visible and show symmetry in the two channels. In the second experiment we have two human subjects moving away
from the antenna at different speeds and roughly at the same range of about 10 meters. The Range-Doppler map
of the two transmit channels are given in Figure 11. Again the target returns are clearly visible and separated in

Doppler.

12
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Appendix A Schematics for X-Band Custom RF Frontend

13
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